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Abstract. In a quasi-two-dimensional p-wave superconductor we find six Cooper pairing states
which are degenerate within the weak-coupling approach. We show that this degeneracy can be
lifted by feedback effect favouring the so-called chiral p-wave state. This effect is based on the
anomalous coupling between charge and current in a system with broken time reversal symmetry
and parity.

The discovery of odd-parity Cooper pairing in Sr2RuO4 led to the renewed interest in the
so-called p-wave (spin-triplet) superconductivity [1, 2]. There is a number of other systems,
such as the heavy Fermion superconductors UPt3 and UBe13 or the organic superconductor
(TMTSF)2PF6, where odd-parity pairing is very likely realized [3, 4]. The spin-1 degree of
freedom of the spin-triplet Cooper pairs provides a considerably wider space of potential
pairing states than in the even-parity (spin singlet) case [5]. The symmetry and effective
dimensionality of the electronic band structure plays an important role in determining the
possible p-wave pairing states. The examples listed above cover many of the possibilities: the
organic superconductor is quasi-one-dimensional, the heavy Fermion compounds are three-
dimensional, while Sr2RuO4 represents the case of a quasi-two-dimensional system.

The large number of possible p-wave states makes their identification for each material
a difficult task. A simple weak-coupling BCS type of approach can give a first guess of the
most stable state. Because the condensation energy is in this case directly connected with the
presence of the energy gap in the quasi-particle spectrum, the state with the least nodes in the
gap would be most favourable. In one and three dimensions the most stable state is unique
up to spin rotation. Assuming parabolic band structure for the corresponding dimension and
using the d-vector notation we find

d(k) = x̂kx for 1d
d(k) = x̂kx + ŷky + ẑkz for 3d

(1)

where the gap matrix is defined as �̂k = iσ2σ ·d(k) and the quasiparticle gap is 1
2 tr[�̂+

k�̂k] =
|d(k)|2. Obviously the two states are nodeless on the corresponding Fermi surfaces. Note that
the example for three dimensions corresponds to the Balian–Werthammer state or the B-phase
of superfluid 3He [6].

We now consider the case of as quasi-two-dimensional system which is characterized by
the fact that the Fermi surface is open in one direction, the z-axis. In such a system the weak
coupling approach does not lead to a unique state, but we can find six degenerate states with
the same nodeless gap. In Sr2RuO4 their degeneracy is lifted by spin–orbit coupling and the
corresponding states labelled according to the representation of the tetragonal crystal point
group of this compound is given in table 1 [7, 8]. We can distinguish two types of states here:

0953-8984/00/370599+06$30.00 © 2000 IOP Publishing Ltd L599



L600 Letter to the Editor

those which have d-vectors that change orientation for different points on the Fermi surface
belonging to the one-dimensional representation A1u, A2u, B1u and B2u and those which have
a fixed d-vector orientation but a finite orbital angular momentum, belonging to the two-
dimensional Eu representation [7, 8]. Note that the latter is the chiral state, i.e. it breaks
time reversal symmetry and parity. Since all these states are degenerate in the spin rotation
symmetric case beyond simple spin rotation transformation, the question arises which among
them is stable. For Sr2RuO4 experiments suggest the chiral state with d ‖ ẑ [2, 9].

Table 1. Six-fold degenerated states in p-wave pairing symmetry.

� d(k)

A1u x̂k̂x + ŷk̂y

A2u x̂k̂y − ŷk̂x

B1u x̂k̂x − ŷk̂y

B1u x̂k̂y + ŷk̂x

Eu (chiral states) ẑ(k̂x ± ik̂y )

In Sr2RuO4 the loss of spin rotation symmetry by spin–orbit coupling carries the main
responsibility in picking the stable state. In this letter, however, we assume that the spin
rotation symmetry is preserved in the normal state so that all states listed in table 1 have the
same transition temperature Tc as a solution of the linearized weak-coupling gap equation.
In this case the degeneracy must be lifted in a higher order process. A well-known concept
introduced by Anderson and Brinkman is the spin fluctuation feedback mechanism [10, 11].
If paramagnon exchange plays a dominant role in the pairing interaction, the modification
of the spin fluctuation spectrum by the superconducting condensation also alters the pairing
interaction. It was shown that this mechanism works in favour of the so-called AMB-state or
A-phase in 3He [6]. This mechanism applied to the 2D situation turns out to stabilize the time
reversal breaking state which is indeed the analogue to the A-phase [12, 13].

Here we introduce an additional feedback mechanism which does not exist in a neutral
Fermi liquid such as 3He. It is based on the presence of chirality in the orbital part of the
pairing state and we will call it, therefore, the chiral feedback mechanism. It was shown that
in the state d(k) = n(kx ± iky) a Chern–Simons-like term,

εij (A0∂iAj + Ai∂jA0) (2)

appears in the effective low-energy field theory of a static quasi-two-dimensional system (i, j =
x, y ). [14, 15] Consequently, charge fluctuations generate local magnetic field distributions
(z-axis oriented) and current fluctuations lead to transverse electric field distributions, whose
orientation depends on the chirality. This property yields an additional (anomalous) pairing
interaction in the superconducting state which has selective power for chirality. This can be
seen in the following simple picture. The magnetic field induced by the charge of a quasiparticle
acts via the Lorentz force on a passing-by quasiparticle [16]. This force is either attractive
or repulsive depending on which side the quasiparticle trajectory is located (figure 1). In this
way the interaction is attractive for one choice of Cooper pair angular momentum (chirality)
and repulsive for the other. The attractive interaction appears for the same chirality realized in
the pairs of the condensate. Hence this leads to a positive feedback for the chiral state. This
effect does not exist for the other states.

We now discuss the effect by explicitly calculating its contribution to condensation
energy immediately below the transition temperature Tc. We represent the d-vector by
d(p) = nγ dγ iki/kF where dγ i is a complex order parameter and kF inverse of the Fermi
wavelength. The band structure is simply parabolic εk = h̄2(k2

x + k2
y − k2

F)/2me without any
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( i ) ( ii )

Figure 1. Two quasiparticles feel (i) attractive or (ii) repulsive interaction depending on their
relative angular momentum.

dispersion along the z-axis leading to a cylindrical (open) Fermi surface. We assume that the
system has a layered structure as Sr2RuO4 with an interlayer spacing d leading to the density
of states, N(0) = me/2πh̄2d , at the Fermi level. The anomalous pairing interaction appearing
in the superconducting phase is connected with the density-current correlation function which
for the 2D electrons has the form (in the unit h̄ = c = 1)

π0j (iνn, q) =
∫

dτd3xeiνnτ eiq·x〈ρ̂(x, τ )ĵj (0, 0)〉

= kBT
∑
m

∫
d3k

(2π)3

−(2kj + qj )

2me

Tr[G(iωm + iνn,k + q)G(iωm,k)

−F†(iωm + iνn,k + q)F(iωm,k)] (j = 1, 2) (3)

and the Green functions are

G(iωm,k) = iωm + ε(k)

ω2
m + E(k)2

and F(iωm,k) = − i�(k)

ω2
m + E(k)2

(4)

with E(p) = ±
√
ε(k)2 + �(k)2 and ωm = (2m + 1)πkBT and νn = 2nπkBT as the

fermionic and bosonic Matsubara frequencies, respectively. We express π0j (iνn, q) =
iεij qif (iνn, q)+νnqjπ(iνn, q) due to the gauge invariance. f (iνn, q) comes from the chirality
and is written as

f (iνn, q) = − i

2!
εij

∂π0j (iνn, q)

∂qi

. (5)

Close to Tc we can restrict ourselves to the leading contributions in dγ i and obtain,

f (iνn, q) = e2kBTc

2mek
2
F

∑
m

∫
d3k

(2π)3

−iεij dγ ld
∗
γ l′klkl′

{(ωm + νn)2 + ε(k + q)2}{ω2
m + ε(k)2} (6)

where we sum over repeated indices. Note that this expression is only finite for a chiral p-wave
state. We restrict ourselves to static contributions and comment on the dynamical part later.

We now consider the q-dependence. We approximate ε(k + q) = ε(k) + vF · q where vF

is the Fermi velocity. In order to evaluate the integral we introduce cylindrical coordinates and
perform first the integration over the radial part and z-component of k,

f (q) = ie2kBTc

4me

N(0)π(εij dγ id
∗
γ l)

∑
m

∫
dθ

2π

k̂l k̂j

|ωm|(|ωm|2 + 1
4 (vF · q)2)

(7)
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where k̂i = ki/|k|. For small q we may expand f (q) as

f (q) ≈ ie2N(0)π

4me(πkBTc)2
εij dγ id

∗
γj

[
7

4
ζ(3) − 31

32
ζ(5)ξ 2q2

⊥ + · · ·
]

(8)

where q2
⊥ = q2

x +q2
y , ξ = vF/2πkBTc defines the coherence length and ζ(n) is the zeta-function.

The behaviour of f (q) for ξq⊥ � 1 is dominated by the regions of the θ -integral for which
|vF · q| � 2πkBTc and leads to

f (q) ≈ ie2

4me

N(0)

(πkBTc)2

εij dγ id
∗
γj

ξq⊥
. (9)

Matching the limiting behaviours together we can approximate f (q) by the following form,

f (q) ≈ ie2

4me

N(0)π

(πkBTc)2

εij dγ id
∗
γj√

1 + γ ξ 2q2
⊥

γ = O(1) (10)

which represents the form factor of parity and time reversal symmetry breaking part in
π0j (0, q).

The current-charge density interaction introduced via π0j (0, q) gives an additional
contribution to the pairing interaction below the superconducting transition. As a feedback
effect this appears in the GL free energy in a fourth-order correction expressed by

�Ffb = kBTc

∫
d3q

(2π)3
D00(q)π0i (q)Dij (q)πj0(q), (11)

following the diagram in figure 2. Here D00, Dij (i, j = 1, 2) is the gauge field propagators
which in Coulomb gauge are,

D00(q) = 1

q2 + l−2
TF

and Dij (q) = −δij

q2
(12)

These propagators contain all renormalizations, i.e. Thomas–Fermi screening for the scalar
potential with the screening length lTF. Since T ≈ Tc London screening of the superconductor
can be neglected. Here we also ignore the dynamical part for simplicity, as it would give the
same contributions for all competing states.

If we separate the q-integration in qz- and q⊥-part, we obtain,

�Ffb =
{

e2N(0)π

4me(πkBTc)2
εij dγ id

∗
γj

}2

kBTcl
2
TF

×
∫

d2q⊥
(2π)2

∫
dqz

2π

q2
⊥

1 + γ ξ 2q2
⊥

1

q2
⊥ + q2

z

1

1 + l2
TF(q

2
⊥ + q2

z )
. (13)

After performing the qz-integration the remaining q⊥-integral has a cutoff q⊥ ∼ l−1
TF . This

leads to the free energy correction,

�Ffb ≈ 8α2

π

Tc

TF

lTF

d

N(0)

(πkBTc)2
(εij dγ id

∗
γj )

2 (14)

where we give an expression formally close to the conventional fourth-order terms in order
to give a comparison of its magnitude. Here we recover the constants h̄ and c, the factor
α = e2/h̄c is the fine structure constant and the ratio Tc/TF indicates the strong coupling
nature of the correction term, similar to the spin fluctuation feedback mechanism. [11]

For the chiral p-wave state εij dγ id
∗
γj = i2χ |�| and zero for all other states (χ = ±1

denotes the chirality). Thus, the correction to the fourth-order term is negative definite and
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Figure 2. The diagram for the fourth order correction in GL free energy. The shadowed circles
show the renormalization by the normal fermionic Green function.

favours the chiral p-wave state. The ratio between this correction and the usual fourth-order
coefficient is

δβfb

β
∼ α2

π

Tc

TF

lTF

d
(15)

which for Sr2RuO4 is of the order 10−6.
It is easy to see that the dynamical contributions, taking into account νn �= 0, does not

change the result qualitatively. The corresponding coefficient in the free energy, however,
increases. We have verified numerically that an increase of one order of magnitude is possible.
It is clear that other mechanisms, such as the spin fluctuation feedback or spin–orbit coupling,
would dominate over the chiral feedback effect in stabilizing the chiral p-wave state. We
would like to emphasize, however, that our analysis shows that for a quasi-two-dimensional
p-wave superconductor the chiral feedback effect, based on the anomalous coupling between
charge and current, supports the chiral superconducting phase and, thus, works in the same
direction as the spin fluctuation feedback mechanism.
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